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Abstract

In this work we generalize the notion of a harmonic bundle of Simpson [C.T. Simpson, Higgs-
bundles and local systems, Institut des hautes Etudes Scientifiques, Publication Mathematiques,
N 75 (1992) 5–95] to the case of indefinite metrics. We show, that harmonic bundles are solu-
tions of tt∗-geometry. Further we analyze the relation between metric tt*-bundles of rankr over
a complex manifoldM and pluriharmonic maps fromM into the pseudo-Riemannian symmetric
space GL(2r,R)/O(2p,2q) in the case of a harmonic bundle. It is shown, that in this case the
associated pluriharmonic maps take values in the totally geodesic subspaceGL(r,C)/U(p, q) of
GL(2r,R)/O(2p,2q). This defines a mapΦ from harmonic bundles overM to pluriharmonic maps
from M toGL(r,C)/U(p, q). Its image is also characterized in the paper. This generalizes the corre-
spondence of harmonic maps from a compact Kähler manifoldN intoGL(r,C)/U(r) and harmonic
bundles overN proven in Simpson’s paper [C.T. Simpson, Higgs-bundles and local systems, Institut
des hautes Etudes Scientifiques, Publication Mathematiques, N 75 (1992) 5–95] and explains the link
between the pluriharmonic maps related to the two geometries.
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1. Introduction

Topological–antitopological fusion ortt∗-geometry is a topic of mathematical and
physical interest. In physics these geometries appeared in the context of topological
quantum-field-theories[5]. Mathematically, these theories are a generalization of varia-
tions of Hodge-structures. Special geometries are particulartt∗-geometries. This follows
from the variations of Hodge-structures approach of[8] and was shown directly by
differential geometric arguments in[4]. The differential geometric notion of special
geometry can be found in[1] and[7].

An interesting result from our point of view was the existence of a mapΦ from the space of
metrictt∗-bundles of rankr over the complex manifold (M,J) to the space of (twisted) pluri-
harmonic maps from the complex manifold (M,J) to the pseudo-Riemannian symmetric
spaceGL(r,R)/O(p, q),where (p, q) is the signature of the metric and the characterization
of the image ofΦ. In the positive definite case the mapΦ is essentially bijective. For metric
tt∗-bundles with positive definite metric on a real form of the holomorphic tangent bundle
T 1,0M of the manifold (M,J) this result is due to Dubrovin[6]. The generalized case was
proven in[16] (compare[15] for the case of positive definite metrics).

From[15] and[8] we knew, that harmonic bundles are objects, which are closely related
to tt∗-bundles. A link between these bundles and harmonic maps from compact Kähler
manifolds toGL(r,C)/U(r) was found in[17]. From Sampson’s theorem[13] it follows
that in this case the notion of harmonic map and pluriharmonic map coincide. Hence,
this is a very similar situation to that described in the last paragraph. The question of
the connection between these results arises and is discussed in this paper, which is a part
of the results of the authors ‘Diplomarbeit’[14] and presented here in a more general
context.

We generalize the notion of a harmonic bundle by admitting indefinite metrics. With
this definition we constructtt∗-bundles from harmonic bundles. To this we apply the result
of [16] and prove that the target space of the pluriharmonic maps can be restricted to the
totally geodesic subspaceGL(r,C)/U(p, q) ofGL(2r,R)/O(2p,2q). The characterization
of the image ofΦ translates to a condition (P) and Simpson’s result for positive definite
signature is obtained, since for positive definite signature the mapΦ is essentially bijective.
Our result is a generalization (for more information see Section4), as arbitrary signature
of the bundle metric is admitted and the compactness and Kähler condition are not needed.
We restrict to simply-connected manifoldsM, since the case with non-tivial fundamental
group can be obtained by utilizing the corresponding theorems in[16]. The pluriharmonic
maps are then replaced by twisted pluriharmonic maps. This paper can been seen as the
succession of[4] in a series of works, in which we study the pluriharmonic maps associated
to particular solutions oftt∗-geometry.
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2. Pluriharmonic maps

Definition 1. Let (M,J) be a complex manifold and (N, h) a pseudo-Riemannian manifold.
A mapf : M → N is calledpluriharmonic if f |C is harmonic for every complex curve
C ⊂ M.

Indeed, the harmonicity off |C is independent of the choice of a Riemannian metric in
the conformal class ofC, by conformal invariance of the harmonic map equation for (real)
surfaces.

For a proof of the following proposition we refer to[4].

Proposition 1. Let (M,J) be a complex manifold and (N, h) a pseudo-Riemannian manifold
with Levi-Civita connection ∇h, D a connection on M which satisfies

DJYX = JDYX (2.1)

for all vector fields which satisfy LXJ = 0 (i.e. for which X− iJX is holomorphic),
f : (M,J) → (N, h) a smooth map and ∇ the connection on T ∗M ⊗ f ∗TN which is in-
duced by D and ∇h.

(i) A map f : (M,J) → (N, h) is pluriharmonic if and only if it satisfies the following
equation

∇′′∂f = 0, (2.2)

where ∂f = df 1,0 ∈ �
(∧1,0

T ∗M ⊗C (TN)C
)

is the (1,0)-component of df and ∇′′

is the (0,1)-component of ∇ = ∇′ + ∇′′.
(ii) Any complex manifold (M,J) admits a torsion-free complex connection, i.e. a torsion-

free connection D which satisfies DJ = 0.
(iii) Any torsion-free complex connection D satisfies (2.1).

The first part of this proposition is often choosen as an alternative definition of plurihar-
monic maps, see for example definition 14.2.2. in[3].

In the sequel, we need a special class of maps, which transports pluriharmonic maps into
pluriharmonic maps. One knows from the theory of harmonic maps:

Proposition 2. Let M,X, Y be pseudo-Riemannian manifolds and Ψ : X → Y a totally
geodesic immersion. Then a map f : M → X is harmonic if and only if Ψ ◦ f : M → Y is
harmonic.
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and from the definition of pluriharmonic maps we obtain

Corollary 1. Let M be a complex manifold, X, Y pseudo-Riemannian manifolds and
Ψ : X → Y a totally geodesic immersion. Then a map f : M → X is pluriharmonic if and
only if Ψ ◦ f : M → Y is pluriharmonic.

We want to apply this result to the symmetric spacesG/K for G = GL(r,R) andK =
O(p, q) or G = GL(r,C) andK = U(p, q),1 wherep+ q = r. We discuss this for the
second example, because the first is very similar and was discussed in[16].

Let Hermp,q(Cr) be the complex hermitianr × rmatrices with hermitian signature (p, q)
andI = Ip,q = diag(1p,−1q).

Claim.GL(r,C) operates on Hermp,q(Cr) via

GL(r,C) × Hermp,q(C
r) → Hermp,q(C

r), (g, B) 	→ g · B := (g−1)HBg−1,

where gH is the hermitian conjugate of g.
The stabilizer of I is

GL(r,C)I = {g ∈ GL(r,C)|g · I = (g−1)HIg−1 = I} = U(p, q)

and the action is transitive due to Sylvester’s theorem. This yields, by identifying orbits and
rest classes, a diffeomorphism

Ψ : GL(r,C)/U(p, q)→̃Hermp,q(C
r) ⊂ GL(r,C), gU(p, q) 	→ (g−1)HIg−1.

Proposition 3. Let (M,J) be a complex manifold. Then the map Ψ is totally geodesic
and a map φ : M → H(p, q) := GL(r,C)/U(p, q), where the target-space is carrying the
(pseudo-)metric induced 2 by the Ad-invariant trace-form (i.e. A,B 	→ tr(AB)) on glr(C),
is pluriharmonic if and only if

ψ = Ψ ◦ φ : M → GL(r,C)/U(p, q)→̃Hermp,q(C
r) ⊂ GL(r,C)

is pluriharmonic.

Proof. The idea is to relateΨ to the totally geodesic Cartan-immersion (For more infor-
mation we refer to[2] theorem 3.42 and[10] volume II chapter X and XI to extend the
proof of [2] to non-compact groupsG. Further references are[11] and[12].). Therefore we
define

σ : GL(r,C) → GL(r,C), g 	→ (g−1)†.

1 HereO(p, q) andU(p, q) are the orthogonal and unitary groups of signature (p, q).
2 Compare [KN] volume 2, ch. X.3 and[2] proposition 3.16 for the construction of the metric on the quotient

fromAd-invariant metrics on herm(p, q) (see Eq.(2.3)).
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Hereg† denotes the adjoint ofg with respect to the hermitian scalar product defined by
< ·, · >=< Ip,q·, · >Cr , where< ·, · >Cr is the hermitian standard scalar product onCr

andI = Ip,q. Explicitly it is g† = IgHI.

σ is a homomorphism and an involution satisfyingGL(r,C)σ = U(p, q).
Hence the Cartan-immersion can be written as

i : GL(r,C)/U(p, q) → GL(r,C),

g 	→ gσ(g−1) = gg† = gIgHI = RI ◦ Ψ ◦�(g),

where Rh is the right-multiplication withh ∈ GL(r,C) and � the map induced on
GL(r,C)/U(p, q) by �̃ : GL(r,C) → GL(r,C), g 	→ (g−1)H. Both are isometries of the
invariant metric and thereforeΨ is totally geodesic. �

To be complete we mention the related symmetric decomposition:

h = {h ∈ glr(C)|h† = −h} = u(p, q)

and

p = {h ∈ glr(C)|h† = h} =: herm(p, q). (2.3)

Let Symp,q(R
r) be the space of symmetricr × r matrices of symmetric signature (p, q)

and

Ψ̃ : GL(r,R)/O(p, q)→̃Symp,q(R
r) ⊂ GL(r,R)

the identification obtained from the analogous action ofGL(r,R) on Symp,q(R
r). With a

similar argumentation we obtain (compare[16])

Proposition 4. Let (M,J) be a complex manifold. Then the map Ψ̃ is totally geodesic
and a map φ : M → S(p, q) := GL(r,R)/O(p, q), where the target-space carries the
(pseudo)metric induced by the Ad-invariant trace-form (i.e. A,B 	→ tr(AB)) on glr(R),
is pluriharmonic if and only if

ψ = Ψ̃ ◦ φ : M → GL(r,R)/O(p, q)→̃Symp,q(R
r) ⊂ GL(r,R)

is pluriharmonic.

In this case the corresponding symmetric decomposition is:

h = {h ∈ glr(R)|h†̃ = −h} = o(p, q), p = {h ∈ glr(R)|h†̃ = h} =: sym(p, q).

Hereg†̃ denotes the adjoint ofg with respect to the (pseudo)-scalar product defined by
< ·, · >=< Ip,q·, · >Rr , where< ·, · >Rr is the standard euclidian scalar product onRr.
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3. tt*-bundles and associated pluriharmonic maps

We recall the definition of att∗-bundle.

Definition 2. (Compare[4] and [16]) A tt*-bundle (E,D, S) over a complex manifold
(M,J) is a real vector bundleE → M endowed with a connectionD and a sectionS ∈
�(T ∗M ⊗ EndE) which satisfy thett*-equation

Rθ = 0 for all θ ∈ R, (3.1)

whereRθ is the curvature tensor of the connectionDθ defined by

DθX := DX + (cosθ)SX + (sinθ)SJX for all X ∈ TM. (3.2)

A metric tt*-bundle (E,D, S, g) is a tt*-bundle (E,D, S) endowed with a possibly indefi-
nite D-parallel fiber metric g such that for allp ∈ M

g(SXY,Z) = g(Y, SXZ) for all X, Y,Z ∈ TpM. (3.3)

Remark.

(1) The flatness of the connectionDθ can be expressed in a set of equations onD andS,
which can be found in[4,16].

(2) If (E,D, S) is a tt*-bundle then (E,D, Sθ) is a tt*-bundle for allθ ∈ R, where

Sθ := Dθ −D = (cosθ)S + (sinθ)SJ (3.4)

The same remark applies to metric tt*-bundles.
(3) We want to remark further that a metrictt∗-bundle corresponds to the real-subbundle

KR of a (D,C, C̃, κ, h) structure in[8] with the data induced onKR by (D,C, C̃, κ, h).

Given a metric tt*-bundle (E,D, S, g), we consider the flat connectionDθ for a fixedθ ∈ R.
Any Dθ parallel frames = (s1, . . . , sr) of E defines a map

G = G(s) : M → Symp,q(R
r) = {A ∈ GL(r)|At = Ahas signature (p, q)},

x 	→ G(x) := (gx(si(x), sj(x))), (3.5)

where (p, q) is the signature of the metricg.
The following theorem was proven in[16]. In the case of metrictt∗-bundles with positive

definite metric on a real form of the holomorphic tangent bundleT 1,0M of the manifold
(M,J) it was shown by Dubrovin[6].

Theorem 1.

1. Let (M,J) be a simply-connected complex manifold. Let (E,D, S, g) be a metric
tt∗-bundle where E has rank r and M dimension n. The representation of the met-
ric g in a Dθ-flat frame of E f : M → Symp,q(R

r) induces a pluriharmonic map

f̃ : M
f→ Symp,q(R

r) →̃ S(p, q), where S(p, q) carries the pseudo-Riemannian metric
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induced by the Ad-invariant trace-form on glr(R). Moreover, for all x ∈ M the im-
age of T 1,0M under the complex linear extension of dL−1

u df̃ x : TxM → ToS(p, q) =
sym(p, q) with canonical base point o consists of commuting matrices, where u ∈ GL(r)
is any element such that f̃ (x) = u · o andLu : S(p, q) → S(p, q) is the isometry induced
by the left-multiplication withu ∈ GL(r).Let s’ be anotherDθ-flat frame. Then s′ = s · U
for a constant matrix and the pluriharmonic map associated to s′ is f ′ = U tfU.

2. Let (M,J) be a simply-connected complex manifold and put E = M × Rr. Then
a pluriharmonic map f̃ : M → S(p, q) gives rise to a pluriharmonic map f :

M
f̃→ S(p, q)→̃Symp,q(R

r) ⊂ GL(r).
If for all x ∈ M the image of T 1,0M under the complex linear extension of dL−1

u df̃ x :
TxM → ToS(p, q) = sym(p, q) consists of commuting matrices, where u ∈ GL(r) is
any element such that f̃ (x) = u · o and Lu : S(p, q) → S(p, q) is the isometry induced
by the left-multiplication with u ∈ GL(r), then the map f induces a metric tt∗−bundle
(E,D = ∂ + S, S = −df̃ , g =< f ·, · >Rr ) on M where ∂ is the canonical flat connec-
tion on E.

In the case of signature (r,0) and (0, r) the map f̃ has the required property.

Remark. It is rather surprising and non-trivial that in the case of signature (r,0) and (0, r)
the condition on the differential of the map̃f holds. The reason for the special role of
this signature can be understood by looking at the proof of[16]. There the property of the
differential of the pluriharmonic map̃f from M to GL(r)/O(r) follows from Sampson’s
theorem[13] and the compactness of the groupO(r),more precisely from the definiteness of
the metric induced by the trace-form ofGL(r) onO(r). This argument does not work in the
case of the other signatures, since the groupsO(p, q) in these signatures are not compact.
We recall, that for metrictt∗-bundles with positive definite metric on a real form of the
holomorphic tangent bundleT 1,0M of the manifold (M,J) this result is due to Dubrovin. In
the third section he uses another proof to obtain the result. The interested reader is invited
to have a look at his work[6] Section3.

4. Harmonic bundles as solutions of tt∗-geometries

In this section we introduce the notion of a harmonic bundle and show that every such
bundle gives a solution of thett∗-equations.

Definition 3. A harmonic bundle (E → M,D,C, C̄, h) consists of the following data:
A complex vector-bundleE over a complex manifoldM, a hermitian pseudo-metrich, a
metric connectionD with respect toh and twoC∞- linear mapsC : �(E) → �(T 1,0M ⊗ E)
andC̄ : �(E) → �(T 0,1M ⊗ E), such that the connection

D(λ) = D+ λC + λ−1C̄

is flat for all λ ∈ S1 andh(CXa, b) = h(a, C̄X̄b) with a, b ∈ �(E) andX ∈ �(T 1,0M).
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Remark. If the metrich is positive definite this definition is equivalent to the definition of a
harmonic bundle in Simpson[17]. Equivalent structures with metrics of arbitrary signature
have been also regarded in[8].

Theorem 2. Let (E → M,D,C, C̄, h) be a harmonic bundle over the complex man-
ifold (M,J), then (E,D, S, g = Reh) with SX := CZ + C̄Z̄ for X = Z + Z̄ ∈ TM and
Z ∈ T 1,0M is a metric tt∗-bundle.

Proof. Forλ = cos(α) + i sin(α) ∈ S1 we have a look atD(λ) :

D
(λ)
X = DX + λCZ + λ̄C̄Z̄ = DX + cos(α)(CZ + C̄Z̄) + sin(α)(iCZ − iC̄Z̄)

= DX + cos(α)SX + sin(α)(CJZ + C̄JZ̄)

= DX + cos(α)SX + sin(α)SJX = DαX.

Hence we have

Dα = D(λ) (4.1)

andDα is flat if and only ifD(λ) is flat.
Further we claim, thatS is g-symmetric. WithX = Z + Z̄ for Z ∈ T 1,0M one finds

h(SX·, ·) = h(CZ + C̄Z̄·, ·) = h(·, CZ + C̄Z̄·) = h(·, SX·)

and consequently the symmetry ofS with respect tog = Reh.
Finally we showDg = 0 :

2X.g(e, f ) = X.(h(e, f ) + h(f, e)) = (Z + Z̄).(h(e, f ) + h(f, e))

= h(DZe, f ) + h(e,DZ̄f ) + h(DZ̄e, f ) + h(e,DZf )

+h(DZf, e) + h(f,DZ̄e) + h(DZ̄f, e) + h(f,DZe)

= h((DZ +DZ̄)e, f ) + h(e, (DZ̄ +DZ)f ) + h((DZ +DZ̄)f, e)

+h(f, (DZ̄ +DZ)e)

= h(DXe, f ) + h(e,DXf ) + h(DXf, e) + h(f,DXe)

= 2(g(DXe, f ) + g(e,DXf )).

This proves, that (E,D, S, g = Reh) is a metrictt∗-bundle. �

Remark. Here we have taken the underlying real bundle of a harmonic bundle to ob-
tain a tt∗-bundle. In this sense one can see a harmonic bundle as a special case of att∗-
bundle. On the other hand, one can interpret a (D,C, C̃, κ, h) structure as a harmonic bundle
(D,C, C̃, h) by forgettingκ. This means that both can be understood as special cases of
each other.
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5. The pluriharmonic map associated to a harmonic bundle

In the last section we have shown, that every harmonic bundle induces a metrictt∗-
bundle and hence a pluriharmonic map toS(2p,2q) = Gl(2r,R)/O(2p,2q) where (p, q)
is the hermitian signature ofh. Later in this section, we use the additional information of
the harmonic bundle structure to restrict the target of the pluriharmonic map toH(p, q) =
GL(r,C)/U(p, q).At the end of the chapter we get a correspondence. Collecting our current
knowledge we obtain the corollary:

Corollary 2. Let (E → M,D,C, C̄, h) be a harmonic bundle over the simply-connected
complex manifold (M,J), then the representation of g = Reh in a D(λ)-flat frame defines
a pluriharmonic map Φg : M → S(2p,2q).

Proof. This follows from the identity(4.1), i.e.D(λ)
X = DαX for λ = cos(α) + i sin(α) ∈ S1

and fromTheorem 1. �

To restrict the image ofΦg we have a look at taking the real-part ofh.
In the following text we identifyCr withRr ⊕ iRr = R2r. In this model the multiplication

with i coincides with the automorphism

j =
(

0 1r

−1r 0

)

andGL(r,C) (respectivelyglr(C)) are the elements inGL(2r,R) (respectivelygl2r(R)),
which commute withj. An endomorphismC ∈ End(Cr) decomposes in its real-partA and
its imaginary partB, i.e.C = A+ iB with A,B ∈ End(Rr). In the above modelC is given
by the matrix

C ↔
(
A −B
B A

)
.

The complex conjugated ofC is

C̄ ↔
(
A B

−B A

)
,

the transposeCt = At + iBt

Ct ↔
(
At −Bt

Bt At

)
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and consequently the hermitian conjugated is

C̄t ↔
(
At Bt

−Bt At

)
.

We observe, that̄Ct = CT where·T is the transpose in End(R2r).
The hermitian matrices Hermp,q(Cr) of signature (p, q) coincide with subset of sym-

metric matricesH ∈ Sym2p,2q(R
2r), which commute withj, i.e. [H, j] = 0. Likewise,

TIp,qHermp,q(Cr) consists of symmetric matricesh ∈ sym(R2r), which commute withj,
i.e. the hermitian matrices ingl2r(R) which we denote by hermp,q(Cr).

A hermitian scalar-producth of signature (p, q) corresponds to a hermitian matrixH ∈
Hermp,q(Cr) of hermitian signature (p, q) defined byh(·, ·) = (H ·, ·)Cr . The condition
C̄t = C, i.e. C hermitian, means in our model, thatC has the form

C ↔
(
A −B
B A

)

with A = At andB = −B t .

Finally we find the explicit representation of the mapR, which corresponds to taking
the real-part of the hermitian metric, i.e. Reh = (R(H)·, ·)R2r :

R : Hermp,q(C
r) → Sym2p,2q(R

2r), H 	→ 1
2(H + H̄ t) = 1

2(H +HT) = ι(H),

whereι is the canonical inclusion Hermp,q(Cr) → Sym2p,2q(R
2r). This map has maximal

rank and is equivariant with respect toGL(r,C).
Further we claim, that it is totally geodesic: The decompositiongl2r(R) =

sym2p,2q(R
2r) ⊕ o(2p,2q) is a symmetric decomposition of the symmetric space

GL(2r)/O(2p,2q) and hence3

[[sym2p,2q(R
2r), sym2p,2q(R

2r)], sym2p,2q(R
2r)] ⊂ sym2p,2q(R

2r).

From [A, j] = [B, j] = [C, j] = 0,we conclude with the Jacobi identity [[A,B], j] = 0
and [[[A,B], C], j] = 0. ConsequentlyTIp,qHermp,q(Cr) = hermp,q(Cr) is a Lie-triple-
product3 in TIp,qSym2p,2q(R

2r) = sym2p,2q(R
2r), i.e.

[[hermp,q(C
r),hermp,q(C

r)],hermp,q(C
r)] ⊂ hermp,q(C

r)

and finallyR : Hermp,q(Cr) → Sym2p,2q(R
2r) is a totally geodesic map.

3 We refer to[9] Ch. IV.7, [10] vol. 2, ch. XI.4 and[11] ch. III for more informations on Lie-triple-products
and totally geodesic subspaces of symmetric spaces and[10] vol. 2, ch. XI.2 for the (canonical) symmetric
decomposition of a symmetric space.
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Summarizing we have the commutative diagram:

where [i] is induced by the inclusioni : GL(r,C) ↪→ GL(2r,R). All maps in the right
square of this diagram are totally geodesic. This gives the proposition:

Proposition 5. A map h : M → Hermp,q(Cr) is pluriharmonic, if and only if g = Reh :
M → Sym2p,2q(R

2r) is pluriharmonic. A map h̃ : M → H(p, q) is pluriharmonic, if and
only if g̃ = [i] ◦ h : M → S(2p,2q) is pluriharmonic.

Proof. As discussed above the mapR : Hermp,q(Cr) → Sym2p,2q(R
2r) is totally geodesic

and an immersion. This means that we are in the situation ofCorollary 1.
The second claim follows from the commutative diagram on the right hand-side and the

statements ofProposition 3andProposition 4, that the composition of a mapf from M to
Hermp,q(Cr) (respectively Sym2p,2q(R

2r)) with Ψ−1 (respectivelyΨ̃−1) is pluriharmonic,
if and only if f is pluriharmonic. �

Theorem 3. Let (E → M,D,C, C̄, h) be a harmonic bundle over the simply-connected
complex manifold (M,J). Then the representation of h in a D(λ)-flat frame defines a pluri-
harmonic map φh : M → Hermp,q(Cr). In addition, for all x ∈ M the image of T 1,0M

under the complex linear extension of dL−1
u d(φ̃h)x : TxM → ToH(p, q) = herm(p, q) con-

sists of commuting matrices, whereu is an arbitrary element satisfying̃φh(x) = u · o, o is
the canonical base point andLu : H(p, q) → H(p, q) is the isometry induced by the left-
multiplication onGL(r,C).

Proof. The pluriharmonicity ofφh follows from Corollary 2andProposition 5. For the
second part we observe, that the differential ofR : glr(C) → gl2r(R) is a homomorphism
of Lie-algebras and therefore preserves the vanishing of the Lie-bracket.�

The following theorem gives the converse statement

Theorem 4. Let (M,J) be a simply-connected complex manifold and E = M × Cr. A
pluriharmonic map φ̃h : M → H(p, q) induces a pluriharmonic map φ̃g = [i] ◦ φ̃h : M →
S(2p,2q). Suppose, that for all x ∈ M the image of T 1,0M under the complex linear exten-
sion of dL−1

u d(φ̃h)x : TxM → ToH(p, q) = herm(p, q) consists of commuting matrices,
whereu is an arbitrary element satisfying̃φh(x) = u · o andLu : H(p, q) → H(p, q) is the
isometry induced by the left-multiplication onGL(r,C). Then (E,D = ∂ + C + C̄, C =
−(dφ̃h)1,0, h = (φh·, ·)Cr ) defines a harmonic bundle, where∂ is the complex linear exten-
sion onTMc of the flat connection onE = M × Cr. In the case of signature (r,0) and (0, r)
the mapφ̃h has the required property.

Proof. Due toProposition 5φ̃g is pluriharmonic. Hence one obtains fromTheorem 1att∗-
bundle (E = M × R2r,D = ∂ + S, S = −dφ̃g, g =< φg·, · >R2r ), since the condition on
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d(φ̃g)x is obtained as inTheorem 3. We are now going to use the additional information, we
have from the fact, that the mapφg comes fromφh, to show that (E,D = ∂ + C + C̄, C =
−(dφ̃h)1,0, h = (φh·, ·)Cr ) is a harmonic bundle.

The hermitian metrich is given by

h = g+ √−1ω

withω = g(j·, ·). This is the standard relation between hermitian metrics on complex vector
spaces and the hermitian metrics on the underlying real vector spaces.

We observeDj = [∂ + S, j] = [SX, j] = 0, becauseS is is the derivation of a map from
M toGL(r,C) and hence commutes withj. ThereforeDω = 0 follows fromDg = 0 and
Dh = 0 fromDω = 0 andDg = 0.

From the definition ofS andSJ in Theorem 2

SX = CZ + C̄Z̄,

SJX = CJZ + C̄JZ̄

for X = Z + Z̄ andZ ∈ T 1,0M we obtain the definition of

2CZ = SX − jSJX,

2C̄Z̄ = SX + jSJX.

In addition we have the identityD(λ)
X = DαX for λ = cos(α) + i sin(α) ∈ S1 which again

gives the equivalence between the flatness ofD(λ) andDα.
It remains to show

h(CZ·, ·) = h(·, C̄Z̄·).

We recall the relationsj∗g = g and (∗) g(j·, ·) = −g(·, j·), which implies the anti-
symmetry of ω = g(j·, ·) and (∗′)ω(j·, ·) = −ω(·, j·). Further we use the identities
(∗∗) [S, j] = [SJ , j] = 0 and that (∗ ∗ ∗) S, SJ are g-symmetric. Due to (**) and (***)
(∗ ∗ ∗∗) S, SJ ω-symmetric. These identities imply

2h(CZ·, ·) = g(SX − jSJX·, ·) + iω(SX − jSJX·, ·)
(∗),(∗∗),(∗∗∗)= g(·, SX + jSJX·) + iω(SX − jSJX·, ·)
(∗′),(∗∗),(∗∗∗∗)= g(·, SX + jSJX·) + iω(·, SX + jSJX·) = 2h(·, C̄Z̄·).

UsingS = −dφ̃g = −d([i] ◦ φ̃h) = −dφ̃hwe find extendingS onTMc toSc forZ ∈ T 1,0M

the equationsCZ = Sc
Z = −dφ̃h(Z) andC̄Z̄ = −dφ̃h(Z̄). �

In [17] Section1Simpson studied Higgs-bundles with harmonic positive definite metrics,
i.e. harmonic bundles, over a compact Kähler-manifoldMn and related these to harmonic
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maps fromM in GL(n,C)/U(n). From his results one can find, that a given flat bundle
with a harmonic metric induces a harmonic map fromM inGL(n,C)/U(n). Conversely, a
harmonic map fromM inGL(n,C)/U(n) and a flat bundle give rise to a harmonic bundle.
From Sampson’s theorem[13] one obtains, that in the above case the notion of harmonic
and pluriharmonic coincide.

This result follows fromTheorems 3 and 4, since the condition on the differential of
φ̃h is satisfied in the case of signature (r,0) and (0, r). We remark, thatTheorems 3 and 4
are in fact more general, since the compactness ofM and K̈ahler condition are not needed.
Simpson uses K̈ahler-identities for vector bundles over compact Kähler manifolds in his
proof. Therefore one cannot use his proof neither in the non-compact nor non-Kähler-case.
Further he needs compactness, since he uses arguments from harmonic map theory, which
are developped from Sius Bochner formula for harmonic maps to obtain the vanishing of
the object which he calls pseudocurvature and which is the integrability constraint for a flat
bundle to define a Higgs bundle. The works[6,16]deal with pluriharmonic maps and prove
the results by direct calculations using the pluriharmonic and thett∗-equations, respectively.
In the case of signature (r,0) and (0, r) [16] needs only the second statement of Sampson’s
theorem[13] (compare the remark afterTheorem 1) and so compactness is not needed.
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